

Introduccion
Un tiristor es un dispositivo semiconductor que consta de cuatro capas similares a las de un diodo, es decir, con estructura pn. Tiene tres uniones, una pn, otra np, y otra pn. Así también tres terminales (ánodo, cátodo, compuerta).
Los tiristores son uno de los tipos más importantes de dispositivos semiconductores de potencia. Los tiristores se utilizan en forma extensa en los circuitos electrónicos de potencia. Se operan como conmutadores biestables, pasando de un estado no conductor a un estado conductor. Para muchas aplicaciones se puede suponer que los Tiristores son interruptores o conmutadores ideales, aunque los tiristores prácticos exhiben ciertas características y limitaciones.

Símbolo del tiristor y tres uniones pn

distintos tipos de tiristores

Funcionamiento

Cuando el voltaje del ánodo se hace positivo con respecto al del cátodo, existe una corriente entre j1 y j3, es decir, tiene una polarización directa. J2 está en inversa y tiene una pequeña corriente del ánodo al cátodo. Se puede decir entonces que el tiristor está en bloqueo directo y se llama a la corriente de j2 “ corriente de estado inactivo (id)”.
Ahora, si el voltaje ánodo-cátodo (vak) se incrementa a un valor grande la unión j2, inversamente polarizada estará en ruptura. Esto se denomina ruptura por avalancha y el voltaje se llama voltaje de ruptura directo (vbo).
Dado que las uniones j1 y j3 están en directa los portadores tendrán un movimiento libre a través de las 3 uniones, lo que provocará una gran corriente directa del ánodo. Entonces el dispositivo está activado. En el estado activo la corriente del ánodo es limitada por una impedancia o una resistencia externa (RL).
Existe una corriente conocida como corriente de enganche (IL), que a fin de mantener un flujo de portadores debe ser menor a la corriente del ánodo. De otra manera al reducirse el voltaje del ánodo al cátodo el tiristor se bloqueará. IL es la corriente del ánodo mínima que se requiere para mantener el tiristor en estado de conducción luego de ser activado y ser retirada la señal en la compuerta.

Luego de que el dispositivo está activado ya no hay control sobre el mismo, ya que el tiristor no consta de una capa de agotamiento debida a movimientos libres de portadores en la unión j2. Si se reduce la corriente directa del ánodo a un nivel menor de la corriente de mantenimiento (IH), se genera una región de agotamiento alrededor de j2; entonces se logrará un bloqueo. La corriente de mantenimiento es menor que la corriente de enganche, es decir, es la corriente de ánodo mínima para mantener el dispositivo en régimen permanente.
Para que la unión j2 este en directa y j1y j3 en inversa el voltaje del cátodo debe ser positivo con respecto al ánodo. En este estado estará en estado de bloqueo inverso y una corriente de fuga inversa denominada corriente inversa (Ir) fluirá a través del dispositivo.
Si se activa aumentando el voltaje directo de vak mas allá de vbo el tiristor puede quedar destruido. En la practica el voltaje directo debe estar por debajo de vbo y el tiristor se activa mediante la aplicación de un voltaje positivo entre la compuerta y el cátodo. Cuando el tiristor está activado gracias a una señal de compuerta y una vez que la corriente del ánodo es mayor que la de mantenimiento, el dispositivo conduce, debido a una retroalimentación positiva, aun si se elimina la señal de compuerta.

Activación del tiristor
Los tiristores pueden activarse, o sea incrementar su corriente de ánodo, por diversas
formas:
Acción térmica
Si la temperatura del tiristor es alta, se incrementan las corrientes ICBO1 y ICBO2 por generación de portadores minoritarios (electrón-huecos), aumentando los valores de á 1 y á 2. Cuando á 1 +á 2 = 1, por acción regenerativa el tiristor se activa.
En consecuencia es necesario limitar la temperatura máxima de funcionamiento para
evitar esta condición no deseada. Los fabricantes suministran los valores máximos de
temperatura de funcionamiento.
Accion de la luz
Si se permite que la luz llegue a las junturas del tiristor (J2), aumentaran los portadores minoritarios electrón-huecos, aumentando las corrientes = ICBO1 y ICBO2 , hasta provocar la activación. Este mecanismo se utiliza para activar tiristores que trabajan en convertidores para alta tensión, utilizando fibras ópticas para
su activación y aislamiento eléctrico del circuito generador de los pulsos de disparo.
(Tiristores activados por luz LASCR).
Aumento de la tensión aplicada
Si la tensión directa aplicada Vac (ánodo-cátodo) resulta mayor que VBO, (tensión máxima de bloqueo directo), por efecto “avalancha”, aumenta ICBO1 y ICBO2 hasta la activación por acción regenerativa, con probabilidad de
destrucción. Esto limita la máxima tensión directa aplicada.
Variación de la tensión aplicada (dv/dt)
Esta acción produce un aumento de las corrientes capacitivas de las junturas del tiristor, suficientes para activarlo. Un valor alto de estas corrientes, puede ser destructivo. Los fabricantes establecen los límites de dv/dt
que pueden soportar los tiristores.
Acción del transistor Q2 ò por corriente de compuerta
Es el método normal para activarlo; se logra aplicando un voltaje positivo a la compuerta respecto al cátodo, que
provocara la circulación de la corriente “IGP”, dando lugar a la acción regenerativa interna en el tiristor . La activación para el “SCR” se logra con voltajes de bloqueo directo (ánodo positivo respecto al cátodo)
0 comentarios:
Publicar un comentario