unidad

BLOG DE ANGEL EDUARDO

BIENVENIDOS A MI CANAL.

UNIDAD 1

CIRCUITOS ELECTRICOS.

UNIDAD 2

TIPOS DE CIRCUITOS.

UNIDAD 3

ELECTRÓNICA ANALÓGICA.

UNIDAD 4

ELECTRÓNICA ANALÓGICA APLICADA.

UNIDAD 5

ELECTRONICA DIGITAL.

UNIDAD 6

LÓGICA DIGITAL.

UNIDAD 7

LOGICA SECUENCIAL.

SUSCRIBANSE

un paso a la innovacion.

jueves, 18 de diciembre de 2014

AMPLIFICADOR OPERACIONAL

PRINCIPIOS BASICOS DE LOS AMPLIFICADORES OPERACIONALES
El amplificador operacional ideal.-
Los fundamentos básicos del amplificador operacional ideal son relativamente fáciles. Quizás, lo mejor para entender el amplificador operacional ideal es olvidar todos los pensamientos convencionales sobre los componentes de los amplificadores, transistores, tubos u otros cualesquiera. En lugar de pensar en ellos, piensa en términos generales y considere el amplificador como una caja con sus terminales de entrada y salida. Trataremos, entonces, el amplificador en ese sentido ideal, e ignoraremos qué hay dentro de la caja.
opfig1.gif (4333 bytes)
Fig. 1
V0 = a Vd
a = infinito
Ri = infinito
Ro = 0
BW (ancho de banda) = infinito
V0 = 0 sí Vd = 0
En la figura 1 se muestra un amplificador idealizado. Es un dispositivo de acoplo directo con entrada diferencial, y un único terminal de salida. El amplificador sólo responde a la diferencia de tensión entre los dos terminales de entrada, no a su potencial común. Una señal positiva en la entrada inversora (-), produce una señal negativa a la salida, mientras que la misma señal en la entrada no inversora (+) produce una señal positiva en la salida. Con una tensión de entrada diferencial, Vd, la tensión de salida, Vo, será a Vd, donde a es la ganancia del amplificador. Ambos terminales de entrada del amplificador se utilizarán siempre independientemente de la aplicación. La señal de salida es de un sólo terminal y está referida a masa, por consiguiente, se utilizan tensiones de alimentación bipolares ( ± )
Teniendo en mente estas funciones de la entrada y salida, podemos definir ahora las propiedades del amplificador ideal. Son las siguientes:
1. La ganancia de tensión es infinita:
2. La resistencia de entrada es infinita:
3. La resistencia de salida es cero:
Ro = 0
4. El ancho de banda es infinito:
5. La tensión offset de entrada es cero:
V0 = 0 sí Vd = 0
A partir de estas características del AO, podemos deducir otras dos importantes propiedades adicionales. Puesto que, la ganancia en tensión es infinita, cualquier señal de salida que se desarrolle será el resultado de una señal de entrada infinitesimalmente pequeña.
Luego, en resumen:
A partir de estas características del AO, podemos deducir otras dos importantes propiedades adicionales. Puesto que, la ganancia en tensión es infinita, cualquier señal de salida que se desarrolle será el resultado de una señal de entrada infinitesimalmente pequeña. Luego, en resumen:

La tensión de entrada diferencial es nula.

FUENTE DE PODER

DEFINICIÓN DEFUENTE DE PODER

Cuando se habla de fuente de poder, (o, en ocasiones, de fuente de alimentación y fuente de energía), se hace referencia al sistema que otorga la electricidad imprescindible para alimentar a equipos como ordenadores o computadoras. Generalmente, en las PC de escritorio, la ya citada fuente de poder se localiza en la parte posterior del gabinete y es complementada por un ventilador que impide que el dispositivo se recaliente.
La fuente de poder, por lo tanto, puede describirse como una fuente de tipo eléctrico  que logra transmitir corriente eléctrica por la generación de una diferencia de potencial entre sus bornes. Se desarrolla en base a una fuente ideal, un concepto contemplado por la teoría de circuitos que permite describir y entender el comportamiento de las piezas electrónicas y los circuitos reales.
Fuente de poder
La fuente de alimentación tiene el propósito de transformar la tensión alterna de la red industrial en una tensión casi continua. Para lograrlo, aprovecha las utilidades de un rectificador, de fusibles y de otros elementos que hacen posible la recepción de la electricidad y permiten regularla, filtrarla y adaptarla a los requerimientos específicos del equipo informático.
Resulta fundamental mantener limpia a la fuente de poder; caso contrario, el polvo acumulado impedirá la salida de aire. Al elevarse la temperatura, la fuente puede sufrir un recalentamiento y quemarse, un inconveniente que la hará dejar de funcionar. Cabe resaltar que los fallos en la fuente de poder pueden perjudicar a otros elementos de la computadora, como el caso de la placa madre o la placa de video.
En concreto podemos determinar que existen dos tipos básicos de fuentes de poder. Una de ellas es la llamada AT (Advanced Technology), que tiene una mayor antigüedad pues data de la década de los años 80, y luego está la ATX (Advanced Technology Extended).
La primera de las citadas se instala en lo que es el gabinete del ordenador y su misión es transformar lo que es la corriente alterna que llega desde lo que es la línea eléctrica en corriente directa. No obstante, también tiene entre sus objetivos el proteger al sistema de las posibles subidas de voltaje o el suministrar a los dispositivos de aquel toda la cantidad de energía que necesiten para funcionar.
Además de fuente AT también es conocida como fuente analógica, fuente de alimentación AT o fuente de encendido mecánico. Su encendido mecánico y su seguridad son sus dos principales señas de identidad.
La ATX, por su parte, podemos decir que es la segunda generación de fuentes para ordenador y en concreto se diseñó para aquellos que estén dotados con microprocesador Intel Pentium MMX.
Las mismas funciones que su antecesora son las que desarrolla dicha fuente de poder que se caracteriza por ser de encendido digital, por contar con un interruptor que se dedica a evitar lo que es el consumo innecesario durante el estado de Stand By y también ofrece la posibilidad de ser perfectamente apto para lo que son los equipos que están dotados con microprocesadores más modernos.

CONMUTADOR

En una instalación eléctrica, un conmutador es un dispositivo eléctrico o electrónico que permite modificar el camino que deben seguir los electrones. Son típicos los manuales, como los utilizados en las viviendas y en dispositivos eléctricos, y los que poseen algunos componentes eléctricos o electrónicos como el relé. Se asemejan a los interruptores en su forma exterior, pero los conmutadores a la vez que desconectan un circuito, conectan otro. Seguidamente se describen los tipos de conmutadores más usuales

AMPLIFICADORES

Un amplificador es todo dispositivo que, mediante la utilización de energía, magnífica la amplitud de un fenómeno. Aunque el término se aplica principalmente al ámbito de los amplificadores electrónicos, también existen otros tipos de amplificadores, como los mecánicosneumáticos, e hidráulicos, como los gatos mecánicos y los boosters usados en los frenos de potencia de los automóviles. Amplificar es agrandar la intensidad de algo, por lo general sonido. También podría ser luz o magnetismo, etc. En términos particulares, "amplificador", es un aparato al que se le conecta un dispositivo de sonido y aumenta la magnitud del volumen. En música, se usan de manera obligada en las guitarras eléctricas y en los bajos, pues esas no tienen caja de resonancia, la señal se obtiene porque las cuerdas, metálicas y ferrosas, vibran sobre una cápsula electromagnética, y esa señal no es audible, pero amplificada por un amplificador (valga la redundancia) suena con su sonido característicos. Mediante su interfaz se le puede agregar distintos efectos, como trémolo, distorsiones o reverb entre otros. Las radios y los televisores tienen un amplificador incorporado, que se maneja con la perilla o telecomando del volumen y permite que varie la intensidad sonora.

RECTIFICADORES

Un diodo rectificador es uno de los dispositivos de la familia de los diodos más sencillos. El nombre diodo rectificador” procede de su aplicación, la cual consiste en separar los ciclos positivos de una señal de corriente alterna.
Si se aplica al diodo una tensión de corriente alterna durante los medios ciclos positivos, se polariza en forma directa; de esta manera, permite el paso de la corriente eléctrica.
Pero durante los medios ciclos negativos, el diodo se polariza de manera inversa; con ello, evita el paso de la corriente en tal sentido.
Durante la fabricación de los diodos rectificadores, se consideran tres factores: la frecuencia máxima en que realizan correctamente su función, la corriente máxima en que pueden conducir en sentido directo y las tensiones directa e inversa máximas que soportarán.
Una de las aplicaciones clásicas de los diodos rectificadores, es en las fuentes de alimentación; aquí, convierten una señal de corriente alterna en otra de corriente directa.

aplicacion de semiconductores


IRISTOR



electronica

conductor

Introduccion


Un tiristor es un dispositivo semiconductor que consta de cuatro capas similares a las de un diodo, es decir, con estructura pn. Tiene tres uniones, una pn, otra np, y otra pn. Así también tres terminales (ánodo, cátodo, compuerta). 
Los tiristores son uno de los tipos más importantes de dispositivos semiconductores de potencia. Los tiristores se utilizan en forma extensa en los circuitos electrónicos de potencia. Se operan como conmutadores biestables, pasando de un estado no conductor a un estado conductor. Para muchas aplicaciones se puede suponer que los Tiristores son interruptores o conmutadores ideales, aunque los tiristores prácticos exhiben ciertas características y limitaciones. 

dispositivo

Símbolo del tiristor y tres uniones pn


circuito


distintos tipos de tiristores



scr



Funcionamiento 

conmutador


Cuando el voltaje del ánodo se hace positivo con respecto al del cátodo, existe una corriente entre j1 y j3, es decir, tiene una polarización directa. J2 está en inversa y tiene una pequeña corriente del ánodo al cátodo. Se puede decir entonces que el tiristor está en bloqueo directo y se llama a la corriente de j2 “ corriente de estado inactivo (id)”. 
Ahora, si el voltaje ánodo-cátodo (vak) se incrementa a un valor grande la unión j2, inversamente polarizada estará en ruptura. Esto se denomina ruptura por avalancha y el voltaje se llama voltaje de ruptura directo (vbo). 
Dado que las uniones j1 y j3 están en directa los portadores tendrán un movimiento libre a través de las 3 uniones, lo que provocará una gran corriente directa del ánodo. Entonces el dispositivo está activado. En el estado activo la corriente del ánodo es limitada por una impedancia o una resistencia externa (RL). 
Existe una corriente conocida como corriente de enganche (IL), que a fin de mantener un flujo de portadores debe ser menor a la corriente del ánodo. De otra manera al reducirse el voltaje del ánodo al cátodo el tiristor se bloqueará. IL es la corriente del ánodo mínima que se requiere para mantener el tiristor en estado de conducción luego de ser activado y ser retirada la señal en la compuerta. 

diodo


Luego de que el dispositivo está activado ya no hay control sobre el mismo, ya que el tiristor no consta de una capa de agotamiento debida a movimientos libres de portadores en la unión j2. Si se reduce la corriente directa del ánodo a un nivel menor de la corriente de mantenimiento (IH), se genera una región de agotamiento alrededor de j2; entonces se logrará un bloqueo. La corriente de mantenimiento es menor que la corriente de enganche, es decir, es la corriente de ánodo mínima para mantener el dispositivo en régimen permanente. 
Para que la unión j2 este en directa y j1y j3 en inversa el voltaje del cátodo debe ser positivo con respecto al ánodo. En este estado estará en estado de bloqueo inverso y una corriente de fuga inversa denominada corriente inversa (Ir) fluirá a través del dispositivo. 


Si se activa aumentando el voltaje directo de vak mas allá de vbo el tiristor puede quedar destruido. En la practica el voltaje directo debe estar por debajo de vbo y el tiristor se activa mediante la aplicación de un voltaje positivo entre la compuerta y el cátodo. Cuando el tiristor está activado gracias a una señal de compuerta y una vez que la corriente del ánodo es mayor que la de mantenimiento, el dispositivo conduce, debido a una retroalimentación positiva, aun si se elimina la señal de compuerta.


semiconductor

Activación del tiristor


Los tiristores pueden activarse, o sea incrementar su corriente de ánodo, por diversas 
formas: 

Acción térmica 

Si la temperatura del tiristor es alta, se incrementan las corrientes ICBO1 y ICBO2 por generación de portadores minoritarios (electrón-huecos), aumentando los valores de á 1 y á 2. Cuando á 1 +á 2 = 1, por acción regenerativa el tiristor se activa. 
En consecuencia es necesario limitar la temperatura máxima de funcionamiento para 
evitar esta condición no deseada. Los fabricantes suministran los valores máximos de 
temperatura de funcionamiento. 


Accion de la luz 

Si se permite que la luz llegue a las junturas del tiristor (J2), aumentaran los portadores minoritarios electrón-huecos, aumentando las corrientes = ICBO1 y ICBO2 , hasta provocar la activación. Este mecanismo se utiliza para activar tiristores que trabajan en convertidores para alta tensión, utilizando fibras ópticas para 
su activación y aislamiento eléctrico del circuito generador de los pulsos de disparo. 
(Tiristores activados por luz LASCR). 


Aumento de la tensión aplicada 

Si la tensión directa aplicada Vac (ánodo-cátodo) resulta mayor que VBO, (tensión máxima de bloqueo directo), por efecto “avalancha”, aumenta ICBO1 y ICBO2 hasta la activación por acción regenerativa, con probabilidad de 
destrucción. Esto limita la máxima tensión directa aplicada. 


Variación de la tensión aplicada (dv/dt) 

Esta acción produce un aumento de las corrientes capacitivas de las junturas del tiristor, suficientes para activarlo. Un valor alto de estas corrientes, puede ser destructivo. Los fabricantes establecen los límites de dv/dt 
que pueden soportar los tiristores. 


Acción del transistor Q2 ò por corriente de compuerta 

Es el método normal para activarlo; se logra aplicando un voltaje positivo a la compuerta respecto al cátodo, que 
provocara la circulación de la corriente “IGP”, dando lugar a la acción regenerativa interna en el tiristor . La activación para el “SCR” se logra con voltajes de bloqueo directo (ánodo positivo respecto al cátodo) 

TRANSISTOR

El transistor

Dispositivo semiconductor que permite el control y la regulación de una corriente grande mediante una señal muy pequeña.Existe una gran variedad de transistores. En principio, se explicarán los bipolares. Los símbolos que corresponden a este tipo de transistor son los siguientes:
Transistor NPNEstructura de un transistor NPNTransistor PNPEstructura de un transistor PNP
Veremos mas adelante como un circuito con un transistor NPN se puede adaptar a PNP. El nombre de estos hace referencia a su construcción como semiconductor.

1. FUNCIONAMIENTO BASICO

Cuando el interruptor SW1 está abierto no circula intensidad por la Base del transistor por lo que la lámpara no se encenderá, ya que, toda la tensión se encuentra entre Colector y Emisor. (Figura 1).
Figura 1Figura 2
Cuando se cierra el interruptor SW1, una intensidad muy pequeña circulará por la Base. Así el transistor disminuirá su resistencia entre Colector y Emisor por lo que pasará una intensidad muy grande, haciendo que se encienda la lámpara. (Figura 2).
En general: IE < IC < IB ; IE = IB + IC ; VCE = VCB + VBE

2. POLARIZACIÓN DE UN TRANSISTOR

Una polarización correcta permite el funcionamiento de este componente. No es lo mismo polarizar un transistor NPN que PNP.
Polarización de un transistor NPNPolarización de un transistor PNP
Generalmente podemos decir que la unión base - emisor se polariza directamente y la unión base - colector inversamente.

3. ZONAS DE TRABAJO

CORTE.- No circula intensidad por la Base, por lo que, la intensidad de Colector y Emisor también es nula.La tensión entre Colector y Emisor es la de la batería. El transistor, entre Colector y Emisor se comporta como un interruptor abierto.
IB = IC = I= 0; VCE = Vbat
SATURACION.- Cuando por la Base circula una intensidad, se aprecia un incremento de la corriente de colector considerable. En este caso el transistor entre Colector y Emisor se comporta como un interruptor cerrado. De esta forma, se puede decir que la tensión de la batería se encuentra en la carga conectada en el Colector.
ACTIVA.- Actúa como amplificador. Puede dejar pasar más o menos corriente.
Cuando trabaja en la zona de corte y la de saturación se dice que trabaja en conmutación. En definitiva, como si fuera un interruptor.
La ganancia de corriente es un parámetro también importante para los transistores ya que relaciona la variación que sufre la corriente de colector para una variación de la corriente de base. Los fabricantes suelen especificarlo en sus hojas de características, también aparece con la denominación hFE. Se expresa de la siguiente manera:
ß = IC / IB
En resumen:
SaturaciónCorteActiva
VCE~ 0~ VCCVariable
VRC~ VCC~ 0Variable
ICMáxima= ICEO lang=EN-GB~ 0Variable
IBVariable= 0Variable
VBE~ 0,8v< 0,7v~ 0,7v
Los encapsulados en los transistores dependen de la función que realicen y la potencia que disipen, así nos encontramos con que los transistores de pequeña señal tienen un encapsulado de plástico, normalmente son los más pequeños ( TO- 18, TO-39, TO-92, TO-226 ... ); los de mediana potencia, son algo mayores y tienen en la parte trasera una chapa metálica que sirve para evacuar el calor disipado convenientemente refrigerado mediante radiador (TO-220, TO-218, TO-247...) ; los de gran potencia, son los que poseen una mayor dimensión siendo el encapsulado enteramente metálico . Esto, favorece, en gran medida, la evacuación del calor a través del mismo y un radiador (TO-3, TO-66, TO-123, TO-213...).

DIODO

EL DIODO
Componente electrónico que permite el paso de la corriente en un solo sentido. La flecha de la representación simbólica muestra la dirección en la que fluye la corriente.

Es el dispositivo semiconductor más sencillo y se puede encontrar prácticamente en cualquier circuito electrónico.
Constan de la unión de dos tipos de material semiconductor, uno tipo N y otro tipo P, separados por una juntura llamada barrera o unión.
Los diodos se fabrican en versiones de silicio (la más utilizada) y de germanio. Esta barrera o unión es de 0.3 voltios en el germanio y de 0.6 voltios aproximadamente en el diodo de silicio.
El diodo se puede puede hacer funcionar de 2 maneras diferentes:
Polarización directa:
Cuando la corriente circula en sentido directo, es decir del ánodo A al cátodo K, siguiendo la ruta de la flecha (la del diodo). En este caso la corriente atraviesa el diodo con mucha facilidad comportándose prácticamente como un corto circuito. El diodo conduce.

Diodo en polarización directa

Polarización inversa:
Cuando una tensión negativa en bornes del diodo tiende a hacer pasar la corriente en sentido inverso, opuesto a la flecha (la flecha del diodo), o sea del cátodo al ánodo. En este caso la corriente no atraviesa el diodo, y se comporta prácticamente como un circuito abierto. El diodo está bloqueado.

Diodo en polarización inversa

En el caso ideal, el diodo se comporta como un cortociorcuito cuando está polarizado en directa y como un circuito abiero cuando está polarizado en inversa. Las curvas características corriente-tensión real e ideal se muestran a continuación:


Característica i-v real


Característica i-v ideal 


Una característica importante de un diodo o ideal es la corriente de recuperación inversa. Cuando un diodo pasa de conducción a corte, la corriente en él disminuye y, momentáneamente se hace negativa antes de alcanzar el valor cero, como se muestra en la siguiente figura.

Tiempo de recuperación inversa

El tiempo trr es el tiempo de recuperación inversa, normalmente inferior a 1us. Los diodos ded recuperación ràpida se diseñan de modo que tengan trr menores que los diodos diseñados para aplicacioens de 50Hz.

TIPO PYN.

3.0. TIPO N Y TIPO P
Cuando al dopar introducimos átomos con tres electrones de valencia en un elemento de átomos con cuatro estamos formando un semiconductor tipo P, viniendo su nombre del exceso de carga aparentemente positiva (porque los átomos siguen siendo neutros, debido a que tienen igual número de electrones que de protones) que tienen estos elementos. Estos átomos "extraños" que hemos añadido se recombinan con el resto pero nos queda un hueco libre que produce atracción sobre los electrones que circulan por nuestro elemento. También se produce una circulación de estos huecos colaborando en la corriente.

Sin embargo, si los átomos añadidos tienen cinco electrones en su última capa el semiconductor sedenomina de tipo N, por ser potencialmente más negativo que uno sin dopar. En este tipo de materiales tenemos un quinto electrón que no se recombina con los demás y que, por tanto, está libre y vaga por el elemento produciendo corriente. Para hacerse una idea de las cantidades que entran en juego en esto del dopaje se podría decir que se introduce un átomo extraño por cada doscientos millones de átomos del semiconductor.

Hasta ahora hemos descrito la corriente eléctrica como el paso de electrones de un lado a otro pero ha llegado el momento de aumentar este concepto. Como hemos visto la aparición de un hueco produce el movimiento de un electrón hacia él dejando de nuevo un hueco al que irá otro electrón. Este movimiento puede verse desde dos puntos de vista. El primero es el del electrón moviéndose de derecha a izquierda, el segundo sería el del hueco desplazándose de izquierda a derecha. Pues bien, no es correcto ni uno ni otro, sino los dos a la vez. Hay que pensar que tan importante es un movimiento como el otro, y que la corriente eléctrica hemos de concebirla como la suma de los dos. Como veremos, en unos casos será más importante, cuantitativamente hablando, la corriente creada por el movimiento de los electrones y, sin embargo, en otros lo será la creada por los huecos. Se ha adoptado por convenio que la corriente eléctrica lleva el sentido de los huecos, es decir, cuando seguimos el sentido de los electrones la corriente es negativa y positiva en caso contrario.
Debemos dividir a los semiconductores en dos grupos: intrínsecos y extrínsecos. Los semiconductores extrínsecos son aquellos a los que se les ha dopado de alguna forma, produciendo así un semiconductor tipo P o del tipo N. Y los intrínsecos son los que no han sufrido ninguna clase de dopaje
Puesto que el paso de electrones a través de cualquier material siempre produce calor nos va a ser imposible separar los efectos producidos por el dopaje y el aumento de temperatura en un semiconductor; así que ambos efectos se suman y la circulación de electrones y huecos va a ser mayor.
3.1. Portadores mayoritarios y minoritarios
No está completa nuestra explicación sin comentar brevemente lo que se conoce con el nombre de portadores mayoritarios y minoritarios.
Cuando existe corriente dentro de un material hemos visto que es debida a electrones moviéndose hacia un lado y a huecos desplazándose en sentido contrario. Pero las cantidades de unos y otros no tienen por qué ser iguales ni parecidas, esto depende del material por el que circule la corriente. Llamamos portadores mayoritarios a quien contribuya al paso de la corriente en mayor medida y, obviamente, los minoritarios serán aquellos que lo hagan en menor medida.
Si tenemos un material tipo N por el que circula corriente, los portadores mayoritarios serán los electrones que le sobran por el dopaje junto con los electrones que saltan debido al calor y los portadores minoritarios serán los huecos producidos al marcharse los electrones de su sitio. Por el contrario, en un semiconductor tipo P los portadores mayoritarios serán los huecos que tiene en exceso por el dopaje más los huecos que se producen por efecto del calor, mientras que los portadores minoritarios serán los electrones que han saltado de su sitio.
3.2. Unión P-N
Llegados a este punto, cualquiera con un poco de curiosidad se habrá hecho la siguiente pregunta: ¿Qué ocurriría si se juntase un trozo de material tipo P con un trozo de material tipo N? Pues bien, esta pregunta ya se la hizo alguien hace unos cuantos años y dio origen a lo que hoy día se conoce como unión P-N.
De nuevo, como electrónicos que somos, solamente nos interesa algo muy concreto de esta unión, lo cual no es otra cosa que su comportamiento de cara al paso de corriente eléctrica.
Supongamos, primeramente, que hemos unido por las buenas un trozo de material tipo P con uno tipo N; ¿Qué ocurre?pues que los electrones que le sobran al material tipo N se acomodan en los huecos que le sobran al material tipo P. Pero,¡ojo!no todos los de un bando se pasan al otro, solamente lo hacen los que están medianamente cerca de la frontera que los separa. A esto se le llama recombinación
¿Por qué solo unos pocos? Pues porque el hecho de que se vayan los electrones con los huecos es debido a la atracción mutua que existe entre ellos ya que poseen cargas opuestas; sin embargo, una vez que se han pasado cierta cantidad de electrones al otro bando comienza a haber una concentración de electrones mayor de lo normal, lo que provoca que estos empiecen a repelerse entre ellos. Por tanto, se llega a un equilibrio al haberse ido los suficientes electrones para apaciguar la atracción hueco-electrón inicial pero no tantos como para llegar a repelerse entre ellos.
Una vez alcanzado este equilibrio se dice que se ha creado una barrera de potencial. Una barrera de potencial es simplemente una oposición a que sigan pasando los electrones y huecos de un lado a otro. Esta situación permanecerá inalterable mientras no hagamos nada externo para modificarla, es decir, compensar el efecto de esa barrera de potencial con otro potencial aportado por nosotros, por ejemplo, conectándolo a una batería.
3.3 Polarización directa e inversa
Existen dos formas de conectar una batería a una unión P-N. Primero conectar el borne positivo de la batería con el material tipo P y el borne negativo con el material tipo N y la otra conectar el borne positivo con el material tipo N y el borne negativo con el tipo P. A la primera de ellas se la denomina polarización directa y a la segunda polarización inversa. Veamos qué ocurre en cada una de ellas. Al polarizar directamente una unión P-N el polo negativo de la batería está inyectando electrones al material N, mientras que el polo positivo recibe electrones del lado P creándose así una corriente eléctrica. Con esta batería hemos conseguido vencer el obstáculo que se había creado debido a la barrera de potencial existente entre ambos materiales. De nuevo los electrones y los huecos pueden pasar libremente a través de la frontera.
Sin embargo, al polarizar inversamente una unión P-N no se crea una corriente en sentido opuesto sino que, curiosamente, no hay corriente alguna. Esto es por que los huecos libres del tipo P se recombinan con los electrones que proceden del polo negativo de la batería, y los electrones libres del tipo N son absorbidos por ésta, alejándose tanto huecos como electrones de la unión, en vez de vencer nuestra barrera de potencial ésta se ha hecho más grande y no existe corriente; aunque, para ser exactos, sí existe una corriente y esta es la producida por los portadores minoritarios, pero es demasiado pequeña e inapreciable.

GERMANIO


Germanio

Elemento químico, metálico, gris plata, quebradizo, símbolo Ge, número atómico 32, peso atómico 72.59, punto de fusión 937.4ºC (1719ºF) y punto de ebullición 2830ºC (5130ºF), con propiedades entre el silicio y estaño. El germanio se encuentra muy distribuido en la corteza terrestre con una abundancia de 6.7 partes por millon (ppm). El germanio se halla como sulfuro o está asociado a los sulfuros minerales de otros elementos, en particular con los del cobre, zinc, plomo, estaño y antimonio.
El germanio tiene una apariencia metálica, pero exhibe las propiedades físicas y químicas de un metal sólo en condiciones especiales, dado que está localizado en la tabla periódica en donde ocurre la transición de metales a no metales. A temperatura ambiente hay poca indicación de flujo plástico y, en consecuencia, se comporta como un material quebradizo.
El germanio es divalente o tetravalente. Los compuestos divalentes (óxido, sulfuro y los halogenuros) se oxidan o reducen con facilidad. Los compuestos tetravalentes son más estables. Los compuestos organogermánicos son numerosos y, en este aspecto, el germanio se parece al silicio. El interés en los compuestos organogermánicos se centra en su acción biológica. El germanio y sus derivados parecen tener una toxicidad menor en los mamíferos que los compuestos de estaño o plomo.
Las propiedades del germanio son tales que este elemento tiene varias aplicaciones importantes, especialmente en la industria de los semiconductores. El primer dispositivo de estado sólido, el transistor, fue hecho de germanio. Los cristales especiales de germanio se usan como sustrato para el crecimiento en fase vapor de películas finas de GaAs y GaAsP en algunos diodos emisores de luz. Se emplean lentes y filtros de germanio en aparatos que operan en la región infrarroja del espectro. Mercurio y cobre impregnados de germanio son utilizados en detectores infrarrojos; los granates sintéticos con propiedades magnéticas pueden tener aplicaciones en los dispositivos de microondas para alto poder y memoria de burbuja magnética; los aditivos de germanio incrementa los amper-horas disponibles en acumuladores.
Efectos del hidruro de Germanio y el tetrahidruro de germanio sobre la salud
El hidruro de germanio y el tetrahidruro de germanio son extremadamente inflammables e incluso explosives cuando son mezclados con el aire. Inhalación: Calambres abdominales. Sensación de quemadura. Tos. Piel: Enrojecimiento. Dolor. Ojos: Enrojecimiento. Dolor.
Peligros físicos: El gas es más pesado que el aire y puede viajar por el suelo; es possible la ignición a distancia.
Vías de exposición: La sustancia puede ser absorbida por el cuerpo por inhalación.
Riesgo de inhalación: En caso de pérdidas en el contenedor se alcanzará rápidamente una concentración peligrosa del gas en el aire.
Efectos de la exposición a corto plazo: La sustancia irrita los ojos, la piel y el tracto respiratorio. La sustancia puede tener efectos en la sngre, resultando en lesiones de las células sanguíneas. La exposición puede resultar en la muerte.



Read more: http://www.lenntech.es/periodica/elementos/ge.htm#ixzz3MKBQO8BW

SILICIO

Elementos

Elementos de la tabla periódica y sus propiedades

En esta página podrás descubrir las propiedades químicas del silicio e información sobre el silicio y otros elementos de la tabla periódica como carbono, germanio, aluminio o fósforo. También aprenderás para qué sirve el silicio y conocerás cuales sus usos a través de sus propiedades asociadas al silicio como su número atómico o el estado habitual en el que se puede encontrar el silicio.
Silicio
Podrás ver cualidades del silicio como su punto de fusión y de ebullición, sus propiedades magnéticas o cual es su símbolo químico. Además, aquí encontrarás información sobre sus propiedades atómicas como la distribución de electrones en los átomos de silicio y otras propiedades.
Para algunos elementos parte de esta información es desconocida. En estos casos mostramos las propiedades que se les atribuyen.

Propiedades del silicio

El silicio forma parte de los elementos denominados metaloides o semimetales. Este tipo de elementos tienen propiedades intermedias entre metales y no metales. En cuanto a su conductividad eléctrica, este tipo de materiales al que pertenece el silicio, son semiconductores.
El estado del silicio en su forma natural es sólido (no magnético). El silicio es un elmento químico de aspecto gris oscuro azulado y pertenece al grupo de los metaloides. El número atómico del silicio es 14. El símbolo químico del silicio es Si. El punto de fusión del silicio es de 1687 grados Kelvin o de 1414,85 grados celsius o grados centígrados. El punto de ebullición del silicio es de 3173 grados Kelvin o de 2900,85 grados celsius o grados centígrados.

Usos del silicio

El silicio es el segundo elemento más abundante en la corteza terrestre y es vital para la industria de la construcción. Si alguna vez te has preguntado para qué sirve el silicio, a continuación tienes una lista de sus posibles usos:
  • El dióxido de silicio y sílice (en forma de arcilla o arena) son componentes importantes de ladrillos, hormigón y cemento.
  • El silicio es un semiconductor. Esto significa que el flujo eléctrico puede ser controlada mediante el uso de partes de silicio. Por lo tanto, el silicio es muy importante en la industria eléctrica. Componentes de silicio se utilizan en las computadoras, los transistores, células solares, pantallas LCD y otros dispositivos semiconductores.
  • La mayoría del silicio se utiliza para la fabricación de aleaciones de aluminio y silicio con el fin de producir piezas fundidas. Las piezas se producen mediante el vertido del material fundido de aluminio y silicio en un molde. Estas piezas de material fundido se utilizan generalmente en la industria del automóvil para fabricar piezas para coches.
  • La masilla "Silly Putty" antes se hacía mediante la adición de ácido bórico al aceite de silicona.
  • El carburo de silicio es un abrasivo muy importante.
  • Los silicatos se puede utilizar para hacer tanto cerámica y como esmalte.
  • La arena, que contiene silicio, es un componente muy importante del vidrio.
  • La silicona, un polímero derivado del silicio, se utiliza en aceites y ceras, implantes mamarios, lentes de contacto, explosivos y pirotecnia (fuegos artificiales).
  • En el futuro, el silicio puede sustituir al carbón como la principal fuente de electricidad.

Propiedades atómicas del silicio

La masa atómica de un elemento está determinado por la masa total de neutrones y protones que se puede encontrar en un solo átomo perteneciente a este elemento. En cuanto a la posición donde encontrar el silicio dentro de la tabla periódica de los elementos, el silicio se encuentra en el grupo 14 y periodo 3. El silicio tiene una masa atómica de 28,0855 u.
La configuración electrónica del silicio es [Ne]3s2 3p2. La configuración electrónica de los elementos, determina la forma el la cual los electrones están estructurados en los átomos de un elemento. El radio medio del silicio es de 110 pm, su radio atómico o radio de Bohr es de 111 pm, su radio covalente es de 111 pm y su radio de Van der Waals es de 210 pm. El silicio tiene un total de 14 electrones cuya distribución es la siguiente: En la primera capa tiene 2 electrones, en la segunda tiene 8 electrones y en su tercera capa tiene 4 electrones.

CARACTERISTICAS DE LOS SEMICONDUCTORES

Antes de ver el funcionamiento de Diodos, Transistores y circuitos integrados, estudiaremos los materiales Semiconductores. Estos, que no son ni conductores ni aislantes, tienen electrones libres, pero lo que les caracteriza especialmente son los huecos.
En este tema, veremos los conceptos y propiedades más importantes de los Semiconductores.
Los objetivos de este tema son:
  • Conocer las características de los semiconductores y conductores a nivel atómico.
  • Ser capaz de describir la estructura de un cristal de Silicio.
  • Saber cuales son y como se comportan los dos tipos de portadores y sus impurezas.
  • Ser capaz de explicar las condiciones que se dan en la unión pn sin polarizar, polarizada en directa y polarizada en inversa.
  • Conocer los dos tipos de corrientes de ruptura provocados por la aplicación sobre un diodo de gran voltaje en inversa.

TRANSFORMADORES

Un transformador es una máquina estática de corriente alterno,  que permite variar alguna función de la corriente como el voltaje o la intensidad, manteniendo la frecuencia y la potencia, en el caso de un transformador ideal.
Para lograrlo, transforma la electricidad que le llega al devanado de entrada en magnetismo para volver a transformarla en electricidad, en las condiciones deseadas, en el devanado secundario.
La importancia de los transformadores, se debe a que, gracias a ellos, ha sido posible el desarrollo de la industria eléctrica. Su utilización hizo posible la realización práctica y económica del transporte de energía eléctrica a grandes distancias.

LEYES DE KIRCHHOFF

Las leyes (o Lemas) de Kirchhoff fueron formuladas por Gustav Kirchhoff en 1845, mientras aún era estudiante. Son muy utilizadas en ingeniería eléctrica para obtener los valores de la corriente y el potencial en cada punto de un circuito eléctrico. Surgen de la aplicación de la ley de conservación de la energía.
Estas leyes nos permiten resolver los circuitos utilizando el conjunto de ecuaciones al que ellos responden. En la lección anterior Ud. conoció el laboratorio virtual LW. El funcionamiento de este y de todos los laboratorios virtuales conocidos se basa en la resolución automática del sistema de ecuaciones que genera un circuito eléctrico. Como trabajo principal la PC presenta una pantalla que semeja un laboratorio de electrónica pero como trabajo de fondo en realidad esta resolviendo las ecuaciones matemáticas del circuito. Lo interesante es que lo puede resolver a tal velocidad que puede representar los resultados en la pantalla con una velocidad similar aunque no igual a la real y de ese modo obtener gráficos que simulan el funcionamiento de un osciloscopio, que es un instrumento destinado a observar tensiones que cambian rápidamente a medida que transcurre el tiempo.
En esta entrega vamos a explicar la teoría en forma clásica y al mismo tiempo vamos a indicar como realizar la verificación de esa teoría en el laboratorio virtual LW.

La primera Ley de Kirchoff

En un circuito eléctrico, es común que se generen nodos de corriente. Un nodo es el punto del circuito donde se unen mas de un terminal de un componente eléctrico. Si lo desea pronuncie “nodo” y piense en “nudo” porque esa es precisamente la realidad: dos o mas componentes se unen anudados entre sí (en realidad soldados entre sí). En la figura 1 se puede observar el mas básico de los circuitos de CC (corriente continua) que contiene dos nodos.
Fig.1 Circuito básico con dos nodos
Fig.1 Circuito básico con dos nodos
Observe que se trata de dos resistores de 1Kohms (R1 y R2) conectados sobre una misma batería B1. La batería B1 conserva su tensión fija a pesar de la carga impuesta por los dos resistores; esto significa cada resistor tiene aplicada una tensión de 9V sobre él. La ley de Ohms indica que cuando a un resistor de 1 Kohms se le aplica una tensión de 9V por el circula una corriente de 9 mA
I = V/R = 9/1.000 = 0,009 A = 9 mA
Por lo tanto podemos asegurar que cada resistor va a tomar una corriente de 9mA de la batería o que entre ambos van a tomar 18 mA de la batería. También podríamos decir que desde la batería sale un conductor por el que circulan 18 mA que al llegar al nodo 1 se bifurca en una corriente de 9 mA que circula por cada resistor, de modo que en el nodo 2 se vuelven a unir para retornar a la batería con un valor de 18 mA.
Fig.2 Aplicación de la primera ley de Kirchoff
Fig.2 Aplicación de la primera ley de Kirchoff
Es decir que en el nodo 1 podemos decir que
I1 = I2 + I3
y reemplazando valores: que
18 mA = 9 mA + 9 mA
y que en el nodo 2
I4 = I2 + I3
Es obvio que las corriente I1 e I4 son iguales porque lo que egresa de la batería debe ser igual a lo que ingresa.

Simulación de la primera Ley de Kirchoff

Inicie el LW. Dibuje el circuito de la figura 2. Luego pulse la tecla F9 de su PC para iniciar la simulación. Como no se utilizó ningún instrumento virtual no vamos a observar resultados sobre la pantalla. Pero si Ud. pulsa sobre la solapa lateral marcada Current Flow observará un dibujo animado con las corrientes circulando y bifurcándose en cada nodo.
Para conocer el valor de la corriente que circula por cada punto del circuito y la tensión con referencia al terminal negativo de la batería, no necesita conectar ningún instrumento de medida. Simplemente acerque la flecha del mouse a los conductores de conexión y el LW generará una ventanita en donde se indica V e I en ese lugar del circuito. Verifique que los valores de corriente obtenidos anteriormente son los correctos.
Para detener la simulación solo debe pulsar las teclas Control y F9 de su PC al mismo tiempo.

Enunciado de la primera Ley de Kirchoff

La corriente entrante a un nodo es igual a la suma de las corrientes salientes. Del mismo modo se puede generalizar la primer ley de Kirchoff diciendo que la suma de las corrientes entrantes a un nodo son iguales a la suma de las corrientes salientes.
La razón por la cual se cumple esta ley se entiende perfectamente en forma intuitiva si uno considera que la corriente eléctrica es debida a la circulación de electrones de un punto a otro del circuito. Piense en una modificación de nuestro circuito en donde los resistores tienen un valor mucho mas grande que el indicado, de modo que circule una corriente eléctrica muy pequeña, constituida por tan solo 10 electrones que salen del terminal positivo de la batería. Los electrones están guiados por el conductor de cobre que los lleva hacia el nodo 1. Llegados a ese punto los electrones se dan cuenta que la resistencia eléctrica hacia ambos resistores es la misma y entonces se dividen circulando 5 por un resistor y otros 5 por el otro. Esto es totalmente lógico porque el nodo no puede generar electrones ni retirarlos del circuito solo puede distribuirlos y lo hace en función de la resistencia de cada derivación. En nuestro caso las resistencias son iguales y entonces envía la misma cantidad de electrones para cada lado. Si las resistencias fueran diferentes, podrían circular tal ves 1 electrón hacia una y nueve hacia la otra de acuerdo a la aplicación de la ley de Ohm.
Mas científicamente podríamos decir, que siempre se debe cumplir una ley de la física que dice que la energía no se crea ni se consume, sino que siempre se transforma. La energía eléctrica que entrega la batería se subdivide en el nodo de modo que se transforma en iguales energías térmicas entregadas al ambiente por cada uno de los resistores. Si los resistores son iguales y están conectados a la misma tensión, deben generar la misma cantidad de calor y por lo tanto deben estar recorridos por la misma corriente; que sumadas deben ser iguales a la corriente entregada por la batería, para que se cumpla la ley de conservación de la energía.
En una palabra, que la energía eléctrica entregada por la batería es igual a la suma de las energías térmicas disipadas por los resistores. El autor un poco en broma suele decir en sus clases. Como dice el Martín Fierro, todo Vatio que camina va a parar al resistor. Nota: el Vatio es la unidad de potencia eléctrica y será estudiado oportunamente.

Segunda Ley de Kirchoff

Cuando un circuito posee mas de una batería y varios resistores de carga ya no resulta tan claro como se establecen la corrientes por el mismo. En ese caso es de aplicación la segunda ley de kirchoff, que nos permite resolver el circuito con una gran claridad.
En un circuito cerrado, la suma de las tensiones de batería que se encuentran al recorrerlo siempre serán iguales a la suma de las caídas de tensión existente sobre los resistores.
En la figura siguiente  se puede observar un circuito con dos baterías que nos permitirá resolver un ejemplo de aplicación.
Fig.3. Circuito de aplicación de la segunda ley de Kirchoff
Fig.3. Circuito de aplicación de la segunda ley de Kirchoff
Observe que nuestro circuito posee dos baterías y dos resistores y nosotros deseamos saber cual es la tensión de cada punto (o el potencial), con referencia al terminal negativo de B1 al que le colocamos un símbolo que representa a una conexión a nuestro planeta y al que llamamos tierra o masa. Ud. debe considerar al planeta tierra como un inmenso conductor de la electricidad.
Las tensiones de fuente, simplemente son las indicadas en el circuito, pero si pretendemos aplicar las caídas de potencial en los resistores, debemos determinar primero cual es la corriente que circula por aquel. Para determinar la corriente, primero debemos determinar cual es la tensión de todas nuestras fuentes sumadas. Observe que las dos fuentes están conectadas de modos que sus terminales positivos están galvánicamente conectados entre si por el resistor R1. esto significa que la tensión total no es la suma de ambas fuentes sino la resta. Con referencia a tierra, la batería B1 eleva el potencial a 10V pero la batería B2 lo reduce en 1 V. Entonces la fuente que hace circular corriente es en total de 10 – 1 = 9V . Los electrones que circulan por ejemplo saliendo de B1 y pasando por R1, luego pierden potencial en B2 y atraviesan R2. Para calcular la corriente circulante podemos agrupar entonces a los dos resistores y a las dos fuentes tal como lo indica la figura siguiente.
Fig.4 Reagrupamiento del circuito
Fig.4 Reagrupamiento del circuito